Fundamentals of Electronics Engineering

- 1.1 Course Number: ECE102
- 1.2 Contact Hours: 3-1-0 Credits: 11
- 1.3 Semester-offered: 1st Year-Both (Odd & Even)
- 1.4 Prerequisite: None
- 1.5 Syllabus Committee Member: Dr. Umakant Dhar Dwivedi, Dr. Abhishek Kumar Singh, Dr. Sajal Agarwal, Dr. Vijay Kumar Singh, Dr. Ankur Pandey.

2. Objective: To introduce the students to the basics of both theoretical and practical aspects of broader area of Electronics Engineering

3. Course Content:

Unit-wise distribution o	of content and number of lectures
--------------------------	-----------------------------------

Unit	Topics	Sub-topic	Lectures
1	Circuit analysis	Passive components, Signal Sources, DC Circuit analysis techniques: KCL, KVL, nodal, mesh, superposition, Thevenins, and Nortons theorems, maximum power transfer	8
2	Semiconductor Devices	Introduction to Semiconductors; Diodes and Zener circuits and their applications, BJT and their applications: structure and modes of operation; NPN and PNP transistor in active mode, DC analysis, BJT as a switch and amplifier, single stage CE amplifier FET based devices and applications: Introduction to JFET, MOSFET, MESFET, their structures operations, and I-V characteristics and applications.	12
3	Integrated Circuits	Introduction to ICs, Operational Amplifiers, Op-Amp characteristics, summing amplifier, inverting and non-inverting configuration, voltage follower, differentiator and integrator; different feedback configurations, Introduction to 555 timer IC.	6
4	Digital Electronics	Number system, logic gates, logic minimization, Boolean algebra, K-Map, Truth tables, introduction to combinational circuits, Introduction to Field programmable gate arrays (FPGAs).	9
5	Introduction to Communication Engineering	Introduction to communication, Communication system, concept of multiplexing and modulation, types of communication, Electromagnetic Spectrum, Bandwidth concept.	5
		Total	40

4. Readings

4.1 Textbook:

- *i.* Charles K. Alexander, Matthew N.O. Sadiku, Fundamentals of electric circuits, McGraw-Hill, 5th Edition 2013
- ii. S. Sedra and K. C. Smith, Microelectronic Circuits, Oxford University Press, 6th edition
- iii. M. Moris Mano, 'Digital Design', PEARSON, 5th edition 2013.
- iv. Boylestad, Robert L., Louis Nashelsky, Electronic Devices and Circuit, Pearson, 11th edition

4.2 Reference books:

- i. E. Hughes, Electrical and Electronic Technology, PEARSON, 2010
- *ii.* William H. Hayt, Jack Kemmerly, Steven M. Durbin, Engineering Circuit Analysis, McGrawHill, 8th Edition 2013
- *iii.* David. A. Bell, Electronic Devices and Circuits:, Oxford University Press, 5th Edn., 5th edition
- *iv.* Leach, Malvino, Saha, Digital Principles and Applications, McGraw Hill Education, 8th edition

5. Outcome of the Course:

The student will learn about fundamentals of Electronics Engineering. They will also be able to learn and use circuit analysis techniques.